Research Interests

Communication does not happen in isolation.  Not only does communication require other animals (a sender and receiver) but it also happens…somewhere!

…and that somewhere may influence what goes on.  For example, if you are talking with a friend in a quiet park or at a restaurant or a sporting event, your topics will likely change as well as your voice level.  Animals are the same.  My research has found they are more reluctant to call if a predator is around (e.g. wolf spiders, Gordon and Uetz, 2012) or more “chatty” if there are other signaling animals around (e.g. glassy-winged sharpshooter, Gordon et al 2017).  Spiders will even use more visual signals if they are on a substrate that does not transmit their vibrational signal (Gordon and Uetz 2011).

Overall, one common thread of my work is communication and how differences in the microenvironment may alter behavior or signaling.  What do I mean by microenvironment?  Good concept to clarify.  For some animals it means how their habitat may change in a short time period—such as if they are standing on a vibrating leaf or a sound dampening rock or perhaps if temperature is a factor in their hearing reception.  Many small or large factors may affect communication in a form of environmental interference.  Some of my research aims to not just study natural interference but see how I can create this interference as a means to disrupt communication and therefore reduce the population of an agricultural pest—in a pesticide free method.

The root of this research can also be related to how much plasticity is there in animal signaling.  That is, how much do animals change to suit their current needs, in regards to communication.  Some animals have evolved the capacity to change and others have not.  Therefore some of my research looks at basic communication patterns.

Similarly, understanding the HOW of communication is important.  What I mean is, how does an ear work?  What affects vibrations of the signals as they travel or received.  From this idea we can learn a lot about mechanics that may be translatable to the engineering world.  If an insect can hear with a 1mm sized ear, shouldn’t we be able to mimic that with our microphones?

I enjoy collaborative work across disciplines answering some of these questions.  Working with engineers is exciting.  Engineers and biologists view problems very differently but can come together to create and implement great ideas.