Gordon SD, Windmill JFC.  2015.  Hearing ability decreases in ageing locusts.  J. of Experimental Biology.  218:1990-199

Gordon SD, Windmill JFC. 2015. Hearing ability decreases in ageing locusts. J. of Experimental Biology. 218:1990-199

Insects display signs of ageing, despite their short lifespan. However, the limited studies on senescence emphasize longevity or reproduction. We focused on the hearing ability of ageing adult locusts, Schistocerca gregaria. Our results indicate that the youngest adults (2 weeks post-maturity) have a greater overall neurophysiological response to sound, especially for low frequencies (<10 kHz), as well as a shorter latency to this neural response. Interestingly, when measuring displacement of the tympanal membrane that the receptor neurons directly attach to, we found movement is not directly correlated with neural response. Therefore, we suggest the enhanced response in younger animals is due to the condition of their tissues (e.g. elasticity). Secondly, we found the sexes do not have the same responses, particularly at 4 weeks post-adult moult. We propose female reproductive condition reduces their ability to receive sounds. Overall our results indicate older animals, especially females, are less sensitive to sounds. Gordon SD, Windmill JFC. 2015. Hearing ability decreases in ageing locusts. J. of Experimental Biology....
Gordon SD, Jackson JC, Rogers SM, Windmill JFC.  2014.  Listening to the Environment:  Hearing Differences from an Epigenetic Effect in Solitarious and Gregarious Locusts.  Proceedings of the Royal Society B. 281 no. 1795 20141693

Gordon SD, Jackson JC, Rogers SM, Windmill JFC. 2014. Listening to the Environment: Hearing Differences from an Epigenetic Effect in Solitarious and Gregarious Locusts. Proceedings of the Royal Society B. 281 no. 1795 20141693

Locusts display a striking form of phenotypic plasticity, developing into either a lone-living solitarious phase or a swarming gregarious phase depending on population density. The two phases differ extensively in appearance, behaviour, and physiology. We found that solitarious and gregarious locusts have clear differences in their hearing, both in their tympanal and neuronal responses. We identified significant differences in the shape of the tympana that may be responsible for the variations in hearing between locust phases. We measured the nanometre mechanical responses of the ear’s tympanal membrane to sound, finding that solitarious animals exhibit greater displacement. Finally, neural experiments signified that solitarious locusts have a relatively stronger response to high frequencies. The enhanced response to high frequency sounds in the nocturnally flying solitarious locusts suggests greater investment in detecting the ultrasonic echolocation calls of bats, to which they are more vulnerable than diurnally active gregarious locusts. This study highlights the importance of epigenetic effects set forth during development and begins to identify how animals are equipped to match their immediate environmental needs. Gordon SD, Jackson JC, Rogers SM, Windmill JFC.  2014.  Listening to the Environment:  Hearing Differences from an Epigenetic Effect in Solitarious and Gregarious Locusts.  Proceedings of the Royal Society B. 281 no. 1795...