by Shira | Mar 21, 2017 |
The ear of the noctuid moth has only two auditory neurons, A1 and A2, which function in detecting predatory bats. However, the noctuid’s ears are located on the thorax behind the wings. Therefore, since these moths need to hear during flight, it was hypothesized that wing position may affect their hearing. The wing was fixed in three different positions: up, flat, and down. An additional subset of animals was measured with freely moving wings. In order to negate any possible acoustic shadowing or diffractive effects, all wings were snipped, leaving the proximal most portion and the wing hinge intact. Results revealed that wing position plays a factor in threshold sensitivity of the less sensitive auditory neuron A2, but not in the more sensitive neuron A1. Furthermore, when the wing was set in the down position, fewer A1 action potentials were generated prior to the initiation of A2 activity. Analyzing the motion of the tympanal membrane did not reveal differences in movement due to wing position. Therefore, these neural differences due to wing position are proposed to be due to other factors within the animal such as different muscle tensions. Gordon SD, Klenschi E, Windmill JFC. 2017. Hearing on the fly: the effects of wing position on noctuid moth hearing. Journal of Experimental Biology....
by Shira | Jun 29, 2014 |
Poikilothermic animals are affected by variations in environmental temperature, as the basic properties of nerve cells and muscles are altered. Nevertheless, insect sensory systems, such as the auditory system, need to function effectively over a wide range of temperatures, as sudden changes of up to 10 °C or more are common. We investigated the performance of auditory receptor neurons and properties of the tympanal membrane of Locusta migratoria in response to temperature changes. Intracellular recordings of receptors at two temperatures (21 and 28 °C) revealed a moderate increase in spike rate with a mean Q10 of 1.4. With rising temperature, the spike rate–intensity–functions exhibited small decreases in thresholds and expansions of the dynamic range, while spike durations decreased. Tympanal membrane displacement, investigated using microscanning laser vibrometry, exhibited a small temperature effect, with a Q10 of 1.2. These findings suggest that locusts are affected by shifts in temperature at the periphery of the auditory pathway, but the effects on spike rate, sensitivity, and tympanal membrane displacement are small. Robust encoding of acoustic signals by only slightly temperature-dependent receptor neurons and almost temperature-independent tympanal membrane properties might enable locusts and grasshoppers to reliably identify sounds in spite of changes of their body temperature. Eberhard MJB*, Gordon SD*, Windmill JFC, Ronacher B. 2014. Temperature effects on the tympanal membrane and auditory receptor neurons in the locust. Journal of Comparative Physiology A. 200:837-847 * These authors contributed...
Recent Comments