Gordon et al (2019) Transmission of the frequency components of the vibrational signal of the glassy‑winged sharpshooter, Homalodisca vitripennis,within and between grapevines

Gordon et al (2019) Transmission of the frequency components of the vibrational signal of the glassy‑winged sharpshooter, Homalodisca vitripennis,within and between grapevines

The agricultural pest, Homalodisca vitripennis, relies on vibrational communication through plants for species identification, location, and courtship. Their vibrational signal exhibits a dominant frequency between 80 and 120 Hz, with higher frequency, lower intensity harmonics occurring approximately every 100 Hz. However, previous research revealed that not all harmonics are recorded in every signal. Therefore, how the female H. vitripennis vibrational signal changes as it travels through the plant was investigated. Results confirmed that transmission was a bending wave, with decreased signal intensity for increasing distance from the source; moreover, at distances of 50 cm, higher frequencies traveled faster than lower frequencies, suggesting that dispersion of H. vitripennis signal components may enable signaling partners to encode distance. Finally, H. vitripennis generates no detectable airborne signal (pressure wave), yet their low vibrational frequency components are detectable in neighboring plants as a result of leaf-to-air-to-leaf propagation. For instance, with isolated key female signal frequencies, 100 Hz was detected at a 10 cm gap between leaves, whereas 600 Hz was detectable only with a 0.1 cm gap. Together, these results highlight the complexity of vibration propagation in plants and suggest the possibility of the animals using the harmonic content to determine distance to the signaling H. vitripennis source.   Gordon, S.D., Tiller, B., Windmill, J.F.C. et al. J Comp Physiol A (2019)....
Gordon SD, Klenschi E, Windmill JFC.  2017.  Hearing on the fly: the effects of wing position on noctuid moth hearing.  Journal of Experimental Biology. 220:1952-1955

Gordon SD, Klenschi E, Windmill JFC. 2017. Hearing on the fly: the effects of wing position on noctuid moth hearing. Journal of Experimental Biology. 220:1952-1955

The ear of the noctuid moth has only two auditory neurons, A1 and A2, which function in detecting predatory bats. However, the noctuid’s ears are located on the thorax behind the wings. Therefore, since these moths need to hear during flight, it was hypothesized that wing position may affect their hearing. The wing was fixed in three different positions: up, flat, and down. An additional subset of animals was measured with freely moving wings. In order to negate any possible acoustic shadowing or diffractive effects, all wings were snipped, leaving the proximal most portion and the wing hinge intact. Results revealed that wing position plays a factor in threshold sensitivity of the less sensitive auditory neuron A2, but not in the more sensitive neuron A1. Furthermore, when the wing was set in the down position, fewer A1 action potentials were generated prior to the initiation of A2 activity. Analyzing the motion of the tympanal membrane did not reveal differences in movement due to wing position. Therefore, these neural differences due to wing position are proposed to be due to other factors within the animal such as different muscle tensions.   Gordon SD, Klenschi E, Windmill JFC. 2017. Hearing on the fly: the effects of wing position on noctuid moth hearing. Journal of Experimental Biology....
Sitvarin M, Gordon SD, Uetz GW, Rypstra A.  2016.  The wolf spider Pardosa milvina detects predator threat level using only vibratory cues.  Behaviour.  153:159-173

Sitvarin M, Gordon SD, Uetz GW, Rypstra A. 2016. The wolf spider Pardosa milvina detects predator threat level using only vibratory cues. Behaviour. 153:159-173

Predators may inadvertently signal their presence and threat level by way of signals in multiple modalities. We used a spider, Pardosa milvina, known to respond adaptively to chemotactile predator cues (i.e., silk, faeces and other excreta) to evaluate whether it could also discriminate predation risk from isolated vibratory cues. Vibrations from its prey, conspecifics, and predators (Tigrosa helluo and Scarites quadriceps) were recorded and played back to Pardosa. In addition, we recorded predator vibrations with and without access to chemotactile cues from Pardosa, indicating the presence of prey. Pardosa did not appear to discriminate between vibrations from prey or conspecifics, but the response to predators depended on the presence of cues from Pardosa. Vibrations from predators with access to chemotactile cues from prey induced reductions in Pardosa activity. Predator cues typically occur in multiple modalities, but prey are capable of imperfectly evaluating predation risk using a limited subset of information. Sitvarin M, Gordon SD, Uetz GW, Rypstra A.  2016.  The wolf spider Pardosa milvina detects predator threat level using only vibratory cues.  Behaviour. ...
Gordon SD, Windmill JFC.  2015.  Hearing ability decreases in ageing locusts.  J. of Experimental Biology.  218:1990-199

Gordon SD, Windmill JFC. 2015. Hearing ability decreases in ageing locusts. J. of Experimental Biology. 218:1990-199

Insects display signs of ageing, despite their short lifespan. However, the limited studies on senescence emphasize longevity or reproduction. We focused on the hearing ability of ageing adult locusts, Schistocerca gregaria. Our results indicate that the youngest adults (2 weeks post-maturity) have a greater overall neurophysiological response to sound, especially for low frequencies (<10 kHz), as well as a shorter latency to this neural response. Interestingly, when measuring displacement of the tympanal membrane that the receptor neurons directly attach to, we found movement is not directly correlated with neural response. Therefore, we suggest the enhanced response in younger animals is due to the condition of their tissues (e.g. elasticity). Secondly, we found the sexes do not have the same responses, particularly at 4 weeks post-adult moult. We propose female reproductive condition reduces their ability to receive sounds. Overall our results indicate older animals, especially females, are less sensitive to sounds. Gordon SD, Windmill JFC. 2015. Hearing ability decreases in ageing locusts. J. of Experimental Biology....
Gordon SD, Jackson JC, Rogers SM, Windmill JFC.  2014.  Listening to the Environment:  Hearing Differences from an Epigenetic Effect in Solitarious and Gregarious Locusts.  Proceedings of the Royal Society B. 281 no. 1795 20141693

Gordon SD, Jackson JC, Rogers SM, Windmill JFC. 2014. Listening to the Environment: Hearing Differences from an Epigenetic Effect in Solitarious and Gregarious Locusts. Proceedings of the Royal Society B. 281 no. 1795 20141693

Locusts display a striking form of phenotypic plasticity, developing into either a lone-living solitarious phase or a swarming gregarious phase depending on population density. The two phases differ extensively in appearance, behaviour, and physiology. We found that solitarious and gregarious locusts have clear differences in their hearing, both in their tympanal and neuronal responses. We identified significant differences in the shape of the tympana that may be responsible for the variations in hearing between locust phases. We measured the nanometre mechanical responses of the ear’s tympanal membrane to sound, finding that solitarious animals exhibit greater displacement. Finally, neural experiments signified that solitarious locusts have a relatively stronger response to high frequencies. The enhanced response to high frequency sounds in the nocturnally flying solitarious locusts suggests greater investment in detecting the ultrasonic echolocation calls of bats, to which they are more vulnerable than diurnally active gregarious locusts. This study highlights the importance of epigenetic effects set forth during development and begins to identify how animals are equipped to match their immediate environmental needs. Gordon SD, Jackson JC, Rogers SM, Windmill JFC.  2014.  Listening to the Environment:  Hearing Differences from an Epigenetic Effect in Solitarious and Gregarious Locusts.  Proceedings of the Royal Society B. 281 no. 1795...